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Abstract

Two-dimensional (2D) material has many advantages including high carrier mobilities and conductivity, high optical
transparency, excellent mechanical flexibility, and chemical stability, which made 2D material an ideal material for
various optoelectronic devices. Here, we developed a facile method of preparing MoS2 nanosheets followed by a
facile liquid exfoliation method via ethyl cellulose-assisted doping and utilizing a plasma-induced p-doping approach
to generate t effectively the partially oxided MoS2 (p-MoS2) nanosheets from the pristine n-type nanosheets. Moreover,
an n-p junction type MoS2 photodetector device with the built-in potentials to separate the photogenerated charges is
able to significantly improved visible light response. We have fabricated photodetector devices consisting of a vertically
stacked indium tin oxide (ITO)/pristine n-type MoS2 nanosheets/p-MoS2/Ag structure, which exhibit reasonably good
performance illumination, as well as high current values in the range of visible wavelength from 350 to 600 nm. We
believe that this work provides important scientific insights for photoelectric response properties of emerging
atomically layered 2D materials for photovoltaic and other optoelectronic applications.
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Background
Over the last decade, two-dimensional (2D) nanoma-
terials have drawn great attention because of their
unique structures, large natural abundance, and dis-
tinctive properties compared to their bulk forms, and
a broad range of applications in catalysis, electronics,
energy-storage devices, optoelectronics, and so on [1–11].
In particular, the semiconducting layered transition
metal dichalcogenides (LTMDs, e.g., WSe2, WS2, and
MoS2) have gained significant interest on optoelec-
tronics due to their direct bandgaps, possessing intri-
guing optical properties suitable for optoelectronic
applications in light-emitting diodes and photovoltaics
[12–14]. Usually, LTMDs have a unique 2D X–M–X
structure in which the transition metal atom layer is
sandwiched between two close-packed chalcogen atom
layers [1, 2, 15–17].

As a prototypical compound of LTMDs, MoS2 has
been extensively studied. Bulk MoS2 is a typical semi-
conductor with an indirect bandgap. Expectedly, mono-
layer MoS2 transistors have been demonstrated with on/
off ratios of 108 and ultralow standby power dissipation
[17–19]. However, to realize the highly efficient opto-
electronic devices based on MoS2, it is also important to
develop a strategy to prepare ultrathin MoS2 nanosheets
and tune the bandgaps with facile process. Several
methods, such as mechanical exfoliation (the so-called
Scotch tape method), liquid exfoliation, colloidal synthe-
sis, chemical vapor deposition, chemical exfoliation, and
electrochemical exfoliation have been developed to pre-
pare ultrathin MoS2 nanosheets [2, 20–30]. Among
these methods, liquid exfoliation not only produces
novel materials with the same composition yet dra-
matically changed electrical properties but also pro-
vides a facile way to prepare thin-layer nanosheets,
which offers novel opportunities in the optoelectron-
ics applications [17, 31–34].
In this work, we report that a novel liquid exfoliation

method via ethyl cellulose-assisted doping can prepare an
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excellent thin MoS2 nanosheets and very effective method
to generate the partially oxidized MoS2 (p-MoS2) nano-
sheets from the pristine n-type nanosheets. Moreover,
an n-p junction type MoS2 photodetector device with
the built-in potentials to separate the photogenerated
charges can result in significantly improved visible
light response. We have fabricated photodetector de-
vices consisting of a vertically stacked indium tin oxide
(ITO)/pristine n-type MoS2 nanosheets/p-MoS2/Ag
structure, which exhibit reasonably good performance
illumination, as well as high current values in the
range of visible wavelength from 350 to 600 nm. This
work provides important scientific insights for lever-
aging unique optoelectronic properties of 2D materials
for photodetector applications.

Methods
Material Synthesis
Molybdenum disulfide (MoS2) nanosheets were syn-
thesized by liquid ultrasound exfoliation as reported in
the literature [35, 36]. Typically, MoS2 power (0.25 g,
Aladdin) was dispersed in ethyl cellulose (EC) isopro-
panol solution (1 % w/v dispersion, 100 ml) in a SEBC
bottle. The dispersion was sonicated for 24 h at 60 W
in water bath. The resulting dispersion was centrifuged
(Desktop High-speed Refrigerated Centrifuge Model
TGL-16) at 5000 rpm for 15 min, and then the super-
natant liquid was directly collected. Deionized water
was mixed with the supernatant liquid (3:4 weight
ratio) and subsequently centrifuged at 7500 rpm for
10 min. Whereafter, the lower precipitation was col-
lected and dried. The resulting precipitation was redis-
persed in ethanol (10 mg/ml). NaCl aqueous solution
(0.04 g/ml) was mixed with the redispersion (9:16
weight ratio) and centrifuged at 5000 rpm for 8 min,

discarding the supernatant. To debride any residual
salt, the resulting MoS2 precipitation was washed with
deionized water and collected by vacuum filtration
(0.45 μm filter paper). Finally, the MoS2 nanosheet
product was dried as a fine black powder. The final
MoS2 nanosheets were defined as n-MoS2. For the
preparation of p-MoS2 nanosheets, the n-MoS2 pow-
der was taken a UV-ozone plasma treatment for
40 min to completely change to p-MoS2 nanosheets.

Characterizations
TEM images were taken by a FEI TECNAI G2 F20-
TWIN TEM. Raman spectra were recorded on inVia
Raman microscope. XPS and UPS measurements were
conducted using an ESCALAB 250Xi (Thermo) sys-
tem. X-ray diffraction (XRD) patterns of the MoS2
was carried out on a Bruker D8 Focus X-ray diffract-
ometer operating at 30 kV and 20 mA with a copper
target (λ= 1.54 Å) and at a scanning rate of 1°/min.

Photodetector Device Fabrication
All devices were fabricated on pre-treatment ITO glass
substrates [37] (sheet resistance <10 Ωsq−1, ShenZhen
NanBo Display Technology Co., Ltd.); cleaned sequen-
tially using sonication in acetone, detergent, deionized
water, and isopropanol; and then dried under a nitrogen
stream, followed by ultraviolet light irradiation. Then,
the n-MoS2 nanosheets (10 mg/ml, in isopropanol) spin
coated with 2000 rpm and thermally annealed at 150 °C
for 15 min receive a thickness of 80 nm. Thereafter, the
p-MoS2 nanosheets (15 mg/ml, in isopropanol) was spin
coated on n-MoS2 nanosheets layer, followed by thermal
annealing at 150 °C for 10 min in atmospheric envir-
onment. Eventually, Argentum Ag (150 nm) was de-
posited over the p-MoS2 nanosheets layer by thermal

Fig. 1 The images are camera pictures of a pristine MoS2 and b MoS2 nanosheets dispersion
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evaporation under a vacuum of 6 × 10−6 Torr to ac-
complish the device fabrication. The effective area of
one cell was ~1 cm2. The photocurrent-voltage curves
and I-T curves were measured with a Keithley 2400
source meter and a 150-W Xe lamp light source. The
dark current-voltage curves were measured by Keithley
2400 source meter under dark. All the measurements
were performed under ambient atmosphere at room
temperature. The incident photo-to-electron conversion

efficiency spectrum (IPCE) were detected under mono-
chromatic illumination (Oriel Cornerstone 260 1/4 m
monochromator equipped with Oriel 70613NS QTH
lamp), and the calibration of the incident light was per-
formed with a monocrystalline silicon diode.

Results and Discussion
The equal concentration of pristine MoS2 and MoS2
nanosheets after the liquid ultrasound exfoliation solution

Fig. 2 The transmission electron microscopy (TEM) images of a pristine MoS2 and b MoS2 nanosheets films on glass substrate, and the inset is
selected area electron diffraction (SAED) pattern of the MoS2 nanosheets. The scanning electron microscopy (SEM) images of c pristine MoS2 and
d MoS2 nanosheets films on glass substrate

Fig. 3 a XRD patterns of the MoS2 films on glass substrate. b Raman spectrum of MoS2 films on glass substrate
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(10 mg/ml) was treated with ultrasound in ethanol for
30 min, respectively. The detailed process is demonstrated
in experimental section. The photographs of pristine
MoS2 and MoS2 nanosheets isopropanol dispersion solu-
tions after ultrasound treatment are shown in Fig. 1. After
storing for 48 h, humorous aggregation can be observed
in pristine MoS2 solution (Fig. 1a) and evident MoS2 parti-
cles adhere to the sidewall. In contrast, the MoS2 nano-
sheets after the liquid ultrasound exfoliation solution
show a highly uniform and homogeneous suspension
solution (Fig. 1b), indicating the successful preparation of
MoS2 nanosheets with the good dispensability.
In order to verify the degree of dispersion of exfoliated

MoS2 nanosheets by ethyl cellulose ethanol solution
via liquid ultrasound exfoliation, transmission electron
microscopy (TEM) and scanning electron microscopy
(SEM) were performed (Fig. 2). For comparison, the

morphologies of the pristine MoS2 nanosheets prepared
by 150 °C thermal annealing for 10 min were also deter-
mined. All of samples were spin-coated on ITO and tested
in the same testing conditions. Figure 2a shows a rough
morphology of the pristine MoS2, and clearly stacked
MoS2 can be seen. However, Fig. 2b displays an individual
MoS2 sheet with six spot pattern in the selected-area elec-
tron diffraction (SAED) of MoS2, suggesting that MoS2 is
scattered as individual MoS2 nanosheet [38, 39]. Also, the
severe aggregation of the pristine MoS2 can be observed
in SEM images (Fig. 2c), intriguingly, after being treated
by ethyl cellulose ethanol solution via liquid ultrasound
exfoliation, MoS2 nanosheets can fully cover and tightly
attach on the ITO substrate with a quite smooth surface
morphology (Fig. 2d).
To further verify morphology results, the XRD pat-

terns of pristine and exfoliated MoS2 nanosheets (Fig. 3a)

Fig. 4 a Mo 3D region and of X-ray photoelectron spectroscopy (XPS) profiles of MoS2 nanosheets with or without plasma treatment. b The ultraviolet
photoelectron spectroscopy (UPS) spectra of MoS2 nanosheets with or without plasma treatment

Fig. 5 a The schematic energy diagram of the MoS2 photodetector b the structure of MoS2 photodetector device
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only the peaks of (103) and (002) plane remain after li-
quid exfoliation which confirms that the MoS2 nano-
sheets were successfully striped [40, 41]. Moreover, the
disappearance of other peaks could prove that ultrathin
MoS2 nanosheets are tightly deposited on the ITO glass
with preferred ductility. The Raman spectrum can once
again prove the exfoliation of MoS2 nanosheets. The two
peaks (1 and 2 g) between 360 and 430 cm−1 are the
main peak of MoS2 [42–44]. After liquid exfoliation, the
obvious decrease of the intensity of the two peaks was
observed.
It is well known that the MoS2 nanosheets are n-type

semiconductor materials and several researches have
been reported that MoS2 could be changed as a p-type
semiconductor material with a relative high work func-
tion after UV-ozone plasma treatment. Thus, the proper-
ties of MoS2 nanosheets with or without the UV-ozone
plasma treatment were also investigated. Figure 4a is
the X-ray photoelectron spectroscopy (XPS) profile of
n-MoS2 nanosheets (without plasma treatment) and p-
MoS2 nanosheets (with plasma treatment). The Mo 3D

spectra of pristine MoS2 nanosheets demonstrate out-
standing Mo4+3d5/2 and Mo4+3d3/2 bands at 228.7 and
231.5 eV, in agreement with the other works for n-MoS2
nanosheets. However, the two strong peaks have a notable
shift to 235.3 and 232.5 eV, respectively, which is simi-
lar with the spectra of MoO3 [45, 46]. Therefore, it
proved that n-MoS2 nanosheets can be successfully ox-
idized to p-type materials after UV-ozone plasma
treatment. Since the MoS2 layer is very thin via the
spin-coating method, it is important to analyze the bi-
layer junction existing at the interface of n-MoS2/p-
MoS2. To gain insight into the electronic structures of
the n-MoS2/p-MoS2 bilayer junction, we have per-
formed the UPS analysis. The work function was cal-
culated through the difference between the cutoff of
the highest binding energy and the photon energy of
the exciting radiation. The valence band (VB) can be
calculated from the cutoff from the lowest binding en-
ergy. As shown in Fig. 4b, after UV-ozone plasma
treatment, the work function of the MoS2 nanosheets
has increased from 4.3 to 5.2 eV. The energy

Fig. 6 Current-voltage curves of the device a under a 150-W Xe lamp light source illumination and b in dark

Fig. 7 a The output signal of photocurrent under alternating light on and light off, where the entire device was illuminated by a 150-W Xe lamp
irradiation. Photoresponse of MoS2-based photodetector at a 0-V DC bias voltage. b Photoresponse of MoS2-based photodetector at 1-V DC bias
voltage. c The spectral photoresponse vs. wavelength, showing a broad photoresponse range from 350 to 650 nm, which is, the absorption
spectrum of the nanohybrid covers the whole energy range of visible light
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difference between the Fermi level and valence band
maximum is decreased from 1.4 to 0.4 eV, demonstrat-
ing the n-type MoS2 nanosheets change to p-type
MoS2 nanosheets [47].
On the basis of the above results, we have constructed

an energy diagram showing the band bending behavior
at the n-MoS2/p-MoS2 bilayer junction interface, as
shown in Fig. 5a. The n-MoS2/p-MoS2 bilayer junction
with a built-in potential promises an excellent photo-
detector performance with a ITO/n-MoS2/p-MoS2/Ag
device structure (Fig. 5b) which will be discussed later.
The photocurrent-voltage curves and the photocurrent-
voltage were measured with the Keithley 2400 source
meter. As shown in Fig. 6a, b, the device shows the
photovoltaic response under a 150-W Xe lamp light
source illumination. The result shows the device have a
p-n junction inside. In order to understand the photo-
electric response properties in more detail and detect
potential application in photoelectronic fields, we have
performed further experiments of photodetector at a
1-V DC bias as shown in Fig. 7a, b. As seen from
Fig. 7a, b, the photocurrent increases at an applied dc
bias voltage of 0 and 1 V. Moreover, the photoresponse is
steady, prompt, and reproducible during repeated on/off
cycles of visible light illumination. More importantly, the
n-MoS2/p-MoS2 bilayer junction-based device shows a
very broad photoelectric response range from 350 to
600 nm, as shown in Fig. 7c, and therefore, the n-MoS2/p-
MoS2 bilayer junction can harvest nearly the whole energy
range of visible light.

Conclusions
We have demonstrated a high-quality n-MoS2/p-MoS2
bilayer junction-based device to achieve the high per-
formance photoresponse which can harvest nearly the
whole energy range of visible light. Excellent, thin ex-
foliated MoS2 nanosheets are realized by a facile liquid
exfoliation, changing the n-type MoS2 nanosheets to
p-type MoS2 nanosheets via a simple plasma treat-
ment. This work shows that thin MoS2 nanosheets can
be fully integrated into the photodetector manufactur-
ing process, which holds promise for realizing 2D ma-
terials in a variety of optical electronic and optical
devices.
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